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SELF-SIMILAR HEATING REGIME UPON DESTRUCTION 

OF THE SURFACE OF MATERIALS 

Yu. V. Polezhaev and G. A. Frolov UDC 536. 212.3 

The applicability of the dependence A* % K/~a~ in mass transfer from the surface of 
heat insulating materials is experimentally demonstrated. A formula for calculating 
the temperature coefficient K is suggested. 

In the classical theory of heat conduction the notion of self-similar heating is widely 
used; this means that a dimensionless Fourier number becomes the single variable determining 
the process of heat propagation. It is believed that to establish this regime, it is 
necessary that the temperature of the outer, heated surface be maintained constant and 
that mass transfer from the surface either by nonexistent, or that its rate be inversely 
proportional to the square root of the time. 

However, the self-similar solution for a semiinfinite body not subject to destruc- 
tion and with constant temperature T w = Tp = const [i] 

O*-- T*--To -- erfc(  Y ) (1) 
T~-- To 2]/~-~ 

satisfies even more complex variants of thermal loading. For instance, according to the 
calculations by A. V. Vasin, when the surface temperature changes trapezoidally, the depth of 
heating 6 T is described by the "almost" self-similar expression 

6T ~ K V ~ ,  (2) 
if m/(e + n) > 2. Here, 

K =O*-~ (3) 
e, n are the heating and cooling sections, respectively, and m is the section with the tempera- 
ture T w = const. 

In distinction to the classical self-similar regime, in the experiments of [2] a 
quasisteady velocity of surface mass transfer was observed. The time of establishing 
such a velocity was about one fifth of the time T6, nevertheless, in the time interval x <_ x~ 
the distance through which the isotherm of phase transformations passed obeyed the dependence 
type (2). In these experiments the quasisteady velocity of mass transfer changed to a multiple 
while the surface temperatures were practically equal. However, the overall amount of heated 
and removed material within the same time of heating remained the same within the accuracy 
of the experiment. Such conditions of destruction were attained by testing specimens in air 
and nitrogen plasma and under radiative heating. It may consequently be assumed that the 
regularity of change in velocity of the outer surface has no effect on the rate of displacement 
of the isotherm of phase transformations in the time interval x <_ r 6. 
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Fig. I. Dependence of the parameters of destruction of an alloyed 
quartz glass ceramic on the heating time: i) depth of heating; 2) 
linear mass transfer; 3) sum of linear mass transfer and depth of 
heating. ~T, S, A*, m; V~; sec I/2. 

Fig. 2. Dependence of the distance covered by the isotherms on the 
heating time for specimens of asbestos textolite: 1-3) 0" = 0.03, 
0.07, and 0.23, respectively (the dashed lines determine the nominal 
point of intersection of the dependences 1-3 with the axis of 
abscissas). 

In other words, in the entire time interval �9 ! x 6 (before a constant depth of heating 
is established), mass transfer S(T) and the thickness of the heated layer 6T(X) (Fig. I), 
if counted off the true surface of the body, may change in time according to completely 
different regularities. However, in sum, they will yield a value that is satisfactorily 
described by the "self-similar" solution. 

if we take into account the time within which the "self-similar" regime of heating x$ 
becomes established, we may write 

a ,  = ~ I/7 (V7- YT~) (4) 

for ~T ! x ! xS" 

Since in [2] the depth of heating was measured according to the isotherms of phase 
transformation, it is of interest to verify the applicability of dependence (4) in a 
broader temperature range. 

For this purpose we carried out experiments measuring the temperature field with the 
aid of thermocouples in a specimen of asbestos textolite tested in a gas generator jet with 
a heat flux of 3500 kW/m 2. It can be seen from Fig. 2 that the path covered by each iso- 
therm from the instant T T onward satisfies expression (4). The graph in Fig. i (curve 3), 
which also confirms the linearity of the dependent A* = f(@~), was obtained from the results 
of tests of specimens of alloyed quartz glass ceramics in a subsonic jet of an electric-arc 
heater [3] when he heating tme was changed from i to 30 sec. The depth of heating was 
checked according to the isotherm corresponding to the melting point of quartz glass ceramics 
(T* % 2000~ 0 * = 0.7). At this temperature the porosity of the specimens changes, and 
the additives - chromium oxides - become partly dissolved, as a result of which the material 
abruptly changes its color. The depth of heating was measured with a microscope MBS-9. 
Processing of the results showed that the experimental error did not exceed 10%. 

Since it follows from (2) that K % 5T/~aT, the question arises to what extent K de- 
pends on the mentioned parameters. From the solution of the problem of heating a semiinfinite 
insulated body without mass transfer from the surface in [4, 5] we obtained expressions type 
(i) for calculating K with different regularities of the change of T w. The calculations, 
carried out in the range of change of the thermal diffusivity by two orders of magnitude, 
showed that the coefficient K depends solely on @* and the regularity of the change of T w 
on the surface, and that K is the larger, the more slowly T w changes. 

When the surface is destroyed under the effect of a constant thermal flux, after the 
time ~ = XT a constant temperature Tp is established on the surface, and from this instant 
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Fig. 3. Diagram of the change of the velocities of the isotherms VO, 
and of the surface V~ in dependence on the heating time. 

Fig. 4. Experimental and theoretical temperature profiles in a specimen 
of asbestos textolite: 1-3) heating time 7, 9, Ii sec, respectively; I) 
experiment; II) calculation of (i); III) calculation by (3); IV) calcula- 

tion by (7). 

onward A* is already a linear function of ~. 
velocity of the isotherm @* the expression 

re. = - -  

TW, ~ y, m. 

When we differentiate (2), we obtain for the 

K1/a 
2I/T: " 

(s) 

Since it was experimentally shown (see Fig. i) that (2) applies to isotherms with 8" 
up to 0.7, it may be assumed that (2), (5) are also applicable to surface isotherms with 
0* % i. However, the time of establishing the depth of heating ~ depends on which isotherm 
is chosen as basis [4]. In proportion to the increase of temperature (@* + I) the value 
of T6 + Tv, i.e., the time of estab!ishing a constant velocity of mass transfer (since ~v 
also characterizes the surface isotherms attaining a quasisteady velocity). The smaller 
8" is, the larger is ~6- Thus, according to [4], with m = 0.i, T~/~ T % 400, and with @* = 1 
and the same m = 0.i, ~6/~T ~ 4Q. 

With increasing m the ratio ~6/~T decreases to 2-5. The range of the existence of the 
dependence A* % KJ~m@y~ therefQre be very small (especially for surface isotherms). 

According to (5) the velocity of any isotherm has to decrease in proportion to i//~, 
and its maximum value corresponds to the instant T T. At that same instant linear mass 
transfer begins, and its velocity gradually increasing, attains its quasisteady value ~ 
at the instant ~v (Fig. 3). If we apply the same schema to the surface isotherms, too, 
it is indispensable that in distinction to the classical self-similar solution, the coeffi- 
cient K not be equal to O, even when 0* = i. In addition, in the time interval ~T ! ~ ! ~6 
the velocity of the surface isotherms is greater than V~ only if its value is sufficiently 
high. 

Since with @* = i, K = 0 in accordance with (I), (2), the question arises first of 
all whether (I) may be used for calculating the coefficient K under conditions of mass 
transfer from the surface. When we determine the depth of heating according to the isotherm 
@* = 0.i, then formula (I) yields a value equal to 2.5. In [4] an expression was obtained 
for calculating the depth of heating; it had the form 

6r= a In T~--To (6) 
V~ T*~To 
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The numerical calculations carried out in this work show that, e.g., with O* = 0.i, 
4a/V~, and A*(T 6) = S(T 6) + 6T(O*) = 5.1a/V~ ~ 2.5 /a--~6, i.e., with O* = 0.i, K = 2.5, 
which is in agreement with the calculation of (i). 

To find the dependence of K on @* in the entire range 0 < O* < i, we use the tempera- 
ture field obtained earlier in a specimen of asbestos textolitewiththe aid of thermocouple 
measurements. 

Figure 4 presents the experimental and theoretical temperature profiles for the 
instants 7, 9, and ii sec. The calculation was carried out by (4), the data on thermal 
conductivity and heat capacity of asbestos textolite that were used taken from [6]. The 
time ~ was found from the graphs in Fig. 2. In addition to (I), (3) in the calculation of 
K, we also used the linear approximation of the form 

1 K ~  (7) 
K - -  KT~ - @ * +  1--KT----~' 

where KTp ~ 0.74 and equal to K for O* = i. 

The obtained results show that with @* < 0.2-0.3, dependence (I) yields good agreement 
between calculation and experiment. When 0* > 0.2, it is better to use expression (7). 

It is interesting to note that in expression (7) a single value of KTp is possible be- 

cause when @* = I, it becomes a cubic equation 

2K~ ~ ' --KTp ~ KTp--1:0, 

and s o l v i n g  i t ,  we f i n d  t h e  n u m e r i c a l  v a l u e  = 0 .73898367 ~ 0 . 7 4 .  KTp 

Thus, in  t h e  g e n e r a l  c a s e  we may a p p r o x i m a t e l y  t a k e  i t  t h a t  A * ( ~ ) : S ( ~ ) + 6 T ( ~ ) ~ K ~ a ~  , 

where ,  in  d i s t i n c t i o n  t o  t h e  c l a s s i c a l  s e l f - s i m i l a r  s o l u t i o n ,  K ~ 0 even when 0* = 1 b e c a u s e  
t h e  i s o t h e r m  s h i f t s  in  r e l a t i o n  t o  t h e  i n i t i a l  d i m e n s i o n  o f  t h e  body.  I t  i s  p o s s i b l e  t h a t  
t h e  f a c t o r  K depends  on t h e  mechanism o f  d e s t r u c t i o n .  Thus a change  o f  m = Cp(Tp - T0)/A Q 

i s  bound to  l e a d  t o  a nonm ono ton i e  change  o f  K. However,  in  t h e  r a n g e  0 .1  < m < 1 (which  i s  
of particular practical interest) this influence does not exceed +15%. 

NOTATION 

Tw, temperature of the surface of the material; T*, temperature of the examined iso- 
thermal surface; Tp, temperature of destruction of the surface; To, temperature of the non- 
heated material; T, heating time; TT, ~v, T6, times of establishing the quasisteady values 
of the temperature of the surface, the velocity of mass transfer, and depth of heating, 
respectively; ~T, depth of heating; S(r), linear mass transfer of material; A*, sum of the 
thicknesses of the heated material and of the material removed from the surface; K, temperature 
coefficient; KTp , temperature coefficient for O* ~ i; a, thermal diffusivity; V~, VS, , velocity 
of displacement of the outer surface and of the isotherms; m, parameter of the thermal effec- 
tiveness of material in the process of destruction; Cp, heat capacity; AQ, thermal effect of 
destruction. 
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